Data Storytelling to Communicate Big Data Internally – a Guide for Practical Usage

  • Lisa Oberascher MCI – Management Center Innsbruck - Internationale Hochschule GmbH, Austria
  • Christian Ploder MCI – Management Center Innsbruck - Internationale Hochschule GmbH, Austria
  • Johannes Spiess Joint systems Fundraising‐& IT‐Services GmbH, Austria
  • Reinhard Bernsteiner MCI – Management Center Innsbruck Internationale Hochschule GmbH, Austria
  • Willemijn Van Kooten MCI – Management Center Innsbruck - Internationale Hochschule GmbH, Austria
Keywords: Data Storytelling, Big Data, Reporting, Data Visualization


Purpose: Data is collected from all aspects of our lives. Yet, data alone is useless unless converted into information and, ultimately, knowledge. Since data analysts, in most cases, are not the ones in charge of making decisions based on their findings, communicating the results to stakeholders is crucial to passing on information of data-driven insights. That is where the discipline of data storytelling comes into play. Often, data storytelling is considered an effective data visualization. Creating data stories is a structured approach to communicating data insights as an interplay of the three elements data, visuals, and narrative. Sharing data-driven insights to support better business decisions require data storytellers skilled in the “art of storytelling”.

Design/Method/Approach: In this paper, the authors discuss the use of data storytelling in business to communicate data to stakeholders for improving decision-making. The findings are derived from (1) an extensive literature review and (2) a qualitative analysis of 13 expert interviews with people incorporating data storytelling into their daily work within their jobs in international companies.

Findings: These interviews revealed the importance of providing a flexible tool to support knowledge sharing for people communicating complex data to internal stakeholders. Combining literature with qualitative research enabled the authors to create the "data storytelling cheat sheet", a guide for practical data storytelling.

Theoretical Implications: Theories like the Psychological distance or the idea of the theory of dual processing dual are used to base our research idea on. There was no new theory built in this paper.

Practical Implications: One of the results is an implementation systematic cheat sheet that helps practitioners to implement data storytelling in their daily business.

Originality/Value: The theory of data storytelling is overwhelming the first time to use and based on an empirical study with experts in the field a guideline for hands on use was developed under a based on a cleanly defined empirical study.

Research Limitations/Future Research: The paper focus on internal data storytelling – maybe with external stakeholders it might be slightly different. The results the data communication part in any data analytics project.

Paper Type: Empirical

JEL Classification: D7, D8


Download data is not yet available.


Aaker, J. (2021). Harnessing the Power of Stories. Retrieved November 12, 2022 from

Al-Doulat, A., Nur, N., Karduni, A., Benedict, A., Al-Hossami, E., Maher, M. L., . . . Niu, X. (2020). Making Sense of Student Success and Risk Through Unsupervised Machine Learning and Interactive Storytelling. In I. I. Bittencourt, M. Cukurova, K. Muldner, R. Luckin, & E. Millán (Eds.), Lecture Notes in Computer Science. Artificial Intelligence in Education (Vol. 12163, pp. 3–15). Cham: Springer International Publishing.

Bladt, J., & Filbin, B. (2013). A Data Scientist’s Real Job: Storytelling. Harvard Business Review.

Boldosova, V., & Luoto, S. (2019). Storytelling, business analytics and big data interpretation. Management Research Review, 43(2), 204–222.

Borkin, M., Bylinskii, Z., Kim, N., Bainbridge, C., Yeh, C., Borkin, D., . . . Oliva, A. (2015). Beyond Memorability: Visualization Recognition and Recall. IEEE Transactions on Visualization and Computer Graphics, PP, 1.

Brewster, S., Fitzpatrick, G., Cox, A., & Kostakos, V. (Eds.) (2019). Extended Abstracts of the 2019 CHI Conference on Human Factors in Computing Systems. New York, NY, USA: ACM: ACM.

Brown, E. D. (2014). Drowning in Data, Starved for Information. Retrieved November 12, 2022 from

Carbonell, J., Sánchez-Esguevillas, A., & Carro, B. (2017). From data analysis to storytelling in scenario building. A semiotic approach to purpose-dependent writing of stories. Futures, 88, 15–29.

Chen, C., Härdle, W., & Unwin, A. (2008). Handbook of Data Visualization. Berlin, Heidelberg: Springer Berlin Heidelberg.

Cohn, N. (2013). Visual narrative structure. Cognitive science, 37(3), 413-452.

Davison, R. M. (2016). The art of storytelling. Information Systems Journal, 26(3), 191–194.

Diakopoulos, N. (2018). Ethics in data-driven visual storytelling. In N. H. Riche, C. Hurter, N. Diakopoulos, & S. Carpendale (Eds.), Data-Driven Storytelling (pp. 233–248). AK Peters/CRC Press.

Dur, B. I. U. (2012). Analysis of data visualizations in daily newspapers in terms of graphic design. Procedia, 51, 278–283.

Dykes, B. (2016). Data Storytelling: The Essential Data Science Skill Everyone Needs. Retrieved November 25, 2022 from

Dykes, B. (2020). Effective Data Storytelling: How to drive change with data, narrative, and visuals. Hoboken, New Jersey: John Wiley & Sons, Inc.; Wiley.

Ehmel, F., Brüggemann, V., & Dörk, M. (2021). Topography of Violence: Considerations for Ethical and Collaborative Visualization Design. Computer Graphics Forum, 40(3), 13–24.

Elias, M., Aufaure, M. A., & Bezerianos, A. (2013). Storytelling in Visual Analytics Tools for Business Intelligence. IFIP Conference on Human-Computer Interaction, 8119, 280–297.

Feigenbaum, A., & Alamalhodaei, A. (2020). The data storytelling workbook (1st ed.). Abingdon Oxon, New York NY: Routledge.

Freytag, G. (1895). Technique of the drama: An exposition of dramatic composition and art. S. Griggs.

Friendly, M., & Wainer, H. (2021). A History of Data Visualization and Graphic Communication (1st ed.). Cambridge, Massachusetts, London: Harvard University Press.

Gadatsch, A., & Landrock, H. (2017). Big Data für Entscheider: Entwicklung und Umsetzung datengetriebener Geschäftsmodelle. Wiesbaden: Springer Fachmedien Wiesbaden.

Gershon, N., & Page, W. (2001). What storytelling can do for information visualization. Communications of the ACM, 44(8), 31–37.

Harris, J. (2007). The whale hunt: Metadata. Retrieved December 20, 2022 from

Hartmann, K. (2020). Digital Marketing Analytics: In theory and in practice (1st ed.). Independently Published.

Hullman, J. (2011). Visualization Rhetoric: Framing Effects in Narrative Visualization. IEEE Transactions on Visualization and Computer Graphics. (12), 2231–2240.

Kahneman, D. (2011). Thinking, fast and slow. New York: Farrar.

Knaflic, C. N. (2015). Storytelling with data: A data visualization guide for business professionals (10th ed.). Hoboken, New Jersey: John Wiley & Sons, Inc.

Kosara, R., & Mackinlay, J. (2013). Storytelling: The Next Step for Visualization. Computer, 46(5), 44–50.

Kreminski, M., Dickinson, M., Mateas, M., & Wardrip-Fruin, N. (2020). Why Are We Like This? The AI Architecture of a Co-Creative Storytelling Game. In G. N. Yannakakis, A. Liapis, P. Kyburz, V. Volz, F. Khosmood, & P. Lopes (Eds.), International Conference on the Foundations of Digital Games (pp. 1–4). New York, NY, USA: ACM.

Kuckartz, U. (2014). Qualitative text analysis: A guide to methods, practice & using software (5th ed.). Los Angeles: SAGE.

Lankow, J., Crooks, R., & Ritchie, J. (2012). Infographics: The power of visual storytelling (1st ed.). New Jersey: John Wiley & Sons, Inc.

Lee, B., Riche, N. H., Isenberg, P., & Carpendale, S. (2015). More than telling a story: Transforming data into visually shared stories. IEEE computer graphics and applications, 35(5), 84-90.

Liberman, N., & Trope, Y. (1998). The role of feasibility and desirability considerations in near and distant future decisions: A test of temporal construal theory. Journal of Personality and Social Psychology, 75(1), 5–18.

Locoro, A., Cabitza, F., Actis-Grosso, R., & Batini, C. (2017). Static and interactive infographics in daily tasks: A value-in-use and quality of interaction user study. Computers in Human Behavior, 35(71), 240–257.

Ma, K. L., Liao, I., Frazier, J., Hauser, H., & Kostis, H. N. (2012). Scientific storytelling using visualization. IEEE Computer Graphics and Applications, 32(1), 12–19.

Matzen, L. E., Haass, M. J., Divis, K. M., Wang, Z., & Wilson, A. T. (2018). Abstract Data Visualizations // Data Visualization Saliency Model: A Tool for Evaluating Abstract Data Visualizations. IEEE Transactions on Visualization and Computer Graphics, 24(1), 563–573.

Nagel, W. E., & Ludwig, T. (2020). Data Analytics. Informatik Spektrum, 42(6), 385–386.

Neifer, T., Lawo, D., Bossauer, P., Esau, M., & Jerofejev, A. M. (2020). Data Storytelling als kritischer Erfolgsfaktor von Data Science. HMD Praxis Der Wirtschaftsinformatik, 57(5), 1033–1046.

Nussbaumer Knaflic, C. (2017). Storytelling mit Daten: Die Grundlagen der effektiven Kommunikation und Visualisierung mit Daten (M. Kauschke, Trans.) (1. Auflage). München: Verlag Franz Vahlen.

Obie, H. O., Chua, C., Avazpour, M., Grundy, J., & Bednarz, T. (2019). A study of the effects of narration on comprehension and memorability of visualisations. Journal of Computer Languages, 52(1), 113–124.

Polatsek, P., Waldner, M., Viola, I., Kapec, P., & Benesova, W. (2018). Exploring visual attention and saliency modeling for task-based visual analysis. Computers & Graphics, 72(12), 26–38.

Roels, R., Baeten, Y., & Signer, B. (2017). Interactive and Narrative Data Visualisation for Presentation-based Knowledge Transfer // Interactive and Narrative Data Visualisation for Presentation-Based Knowledge Transfer. Communications in Computer and Information Science, 739, 237–258.

Ramm, S., Kopf, E.‑M., Dinter, B., & Hönigsberg, S. (2021). What Makes a Good Story: The Use and Acceptance of Storytelling in Business Intelligence. HICSS. (54), 5706–5715.

Ryan, L. (2016). The visual Imperative: Creating a visual culture of data discovery (1st ed.). Amsterdam, Boston: Elsevier MK Morgan Kaufmann.

Sanchez-Lopez, I., Perez-Rodriguez, A., & Fandos-Igado, M. (2020). The explosion of digital storytelling: Creator's perspective and creative processes on new narrative forms. Heliyon, 6(9), e04809.

Segel, E., & Heer, J. (2011). Narrative Visualization: Telling stories with data. IEEE Transactions on Visualization and Computer Graphics, 16(6), 1139–1148.

Showkat, D., & Baumer, E. P. S. (2021). Where Do Stories Come From? Examining the Exploration Process in Investigative Data Journalism. Proceedings of the ACM on Human-Computer Interaction, 5(CSCW2), 1–31.

Snyder, H. (2019). Literature review as a research methodology: An overview and guidelines. Journal of Business Research, 104, 333–339.

Soares de Lima, E., Feijó, B., & Furtado, A. L. (2020). Adaptive storytelling based on personality and preference modeling. Entertainment Computing, 34(6), 100342.

Thorne, S. (2020). Hey Siri, tell me a story: Digital storytelling and AI authorship. Convergence: The International Journal of Research into New Media Technologies, 26(4), 808–823.

Tong, C., Roberts, R., Borgo, R., Walton, S., Laramee, R., Wegba, K., . . . Ma, X. (2018). Storytelling and Visualization: An Extended Survey. Information, 9(3), 65.

Trope, Y., & Liberman, N. (2010). Construal-level theory of psychological distance. Psychological Review, 117(2), 440–463.

Tufte, E. R. (2001). The Visual Display of Quantitative Information (2nd ed.). Connecticut: Graphics Press LLC.

Ware, C. (2020). Information Visualization: Perception for Design (4th ed.). Cambridge: Elsevier Inc.

Yang, L., Xu, X., Lan, X., Liu, Z., Guo, S., Shi, Y., . . . Cao, N. (2022). A Design Space for Applying the Freytag's Pyramid Structure to Data Stories. IEEE Transactions on Visualization and Computer Graphics, 28(1), 922–932.

Yang, P., Luo, F., Chen, P., Li, L., Yin, Z., He, X., & Sun, X. (2019, August). Knowledgeable Storyteller: A Commonsense-Driven Generative Model for Visual Storytelling. In IJCAI (Vol. 3, No. 6, p. 7).

Zhang, Y., Reynolds, M., Lugmayr, A., Damjanov, K., & Hassan, G. M. (2022). A Visual Data Storytelling Framework. Informatics, 9(4), 73.

How to Cite
Oberascher, L., Ploder, C., Spiess, J., Bernsteiner, R., & Van Kooten, W. (2023). Data Storytelling to Communicate Big Data Internally – a Guide for Practical Usage. European Journal of Management Issues, 31(1), 27-39.
Business Development, Leadership and Management